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Abstract

The smart city vision raises the prospect that cities will

become more intelligent in various fields, such as more sus-

tainable environment and a better quality of life for resi-

dents. As a key component of smart cities, intelligent trans-

portation system highlights the importance of vehicle re-

identification (Re-ID). However, as compared to the rapid

progress on person Re-ID, vehicle Re-ID advances at a

relatively slow pace. Some previous state-of-the-art ap-

proaches strongly rely on extra annotation, like attributes

(e.g., vehicle color and type) and key-points (e.g., wheels

and lamps). Recent work on person Re-ID shows that ex-

tracting more local features can achieve a better perfor-

mance without considering extra annotation. In this paper,

we propose an end-to-end trainable two-branch Partition

and Reunion Network (PRN) for the challenging vehicle Re-

ID task. Utilizing only identity labels, our proposed method

outperforms existing state-of-the-art methods on four vehi-

cle Re-ID benchmark datasets, including VeRi-776, Vehi-

cleID, VRIC and CityFlow-ReID by a large margin.

1. Introduction

Vehicle re-identification targets at identifying the same

vehicle across a non-overlapping camera network. It has di-

verse real-world applications. First, vehicle Re-ID can as-

sist the police in the fight against crime. Moreover, it can

also help city planners to get a better understanding of traf-

fic flow. Vehicle Re-ID attracts increasing attention in com-

puter vision community.

License plate number is naturally the most crucial in-

formation for people to recognize a vehicle, which has

been widely applied in real-world traffic flow analysis sys-

tems. However, due to low resolution cameras, occlusions

Figure 1. Examples of similar vehicles with their identity num-

bers in VeRi-776 dataset [20]. These pickup trunks have almost

identical model and color, which makes vehicle Re-ID extremely

challenging. One possible solution is to extract more discrimina-

tive local features from distinct regions.

and non-optimal viewpoints, license plate number recogni-

tion performance drops dramatically in real-world scenar-

ios. Thus, a visual appearance based vehicle Re-ID can in-

crease the performance of a traffic flow analysis system in

cases where license plate number is not observable.

Since both person and vehicle Re-ID belong conceptu-

ally to image retrieval problem, some common used strate-

gies in person Re-ID can also be useful in vehicle Re-ID.

To understand what can be common strategies in Re-ID

tasks, we need to analyze similarities and differences be-

tween these two types of Re-ID tasks. Vehicle Re-ID and

person Re-ID face several similar challenges:

• High appearance variance resulting from different illu-

mination levels, viewpoint changes and diverse camera

properties.
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• Occlusions by other people/cars or static objects (trees,

road sign panels, etc.)

• Bounding box misalignment from imperfect auto-

mated detection systems.

What makes vehicle Re-ID different from person Re-ID:

• Given that there are a limited number of vehicle colors

and types, the low diversity in a vehicle Re-ID dataset

make it more challenging. Figure 1 shows some ex-

amples. Therefore, salient local information is more

important in vehicle Re-ID task.

• Human Body is vertically symmetrical and can be par-

titioned into head, torso, legs and feet along the height

dimension, which makes height-wise partition more

useful. Front and rear view of a car are also vertically

symmetrical. But the side view is asymmetrical and

can be roughly divided into hood, doors, trunk, etc.

along the horizontal axis. On a multi-view vehicle Re-

ID dataset, both height-wise and width-wise partition

are helpful.

The common approach in Re-ID tasks is to build an ap-

pearance signature for each candidate image, on which we

can measure similarities between query and gallery images.

People usually leverage both global features on whole body

and local features on partitioned body parts to tackle mis-

alignment and occlusion problems in person Re-ID tasks.

Since salient local information is more important in ve-

hicle Re-ID, we adopt multiple partitions along 3 dimen-

sions (height, width and channel) in feature maps to insure

that our network can learn more salient local information.

These partitions are illustrated in Figure 2. Meanwhile, both

height and width belong to spatial dimensions, and as a con-

sequence features extracted from the same location on the

feature map can be considered twice in two spatial parti-

tions. To avoid this issue, we split last layers of a backbone

network into 2 branches, from which 2 feature maps are

generated. Then, height-wise and width-wise partition are

implemented separately on these 2 feature maps.

In summary, our major contribution is threefold:

1. We propose a novel 3-dimension partition strategy to

extract more local features from each dimension of im-

ages.

2. By leveraging a 2-branch structure, we split our

network into one ”Height-Channel” branch and one

”Width-Channel” branch, which avoids certain spatial

features being considered twice.

3. For the challenging vehicle Re-ID, we propose an

end-to-end trainable two-branch Partition and Reunion

Network (PRN). In PRN, global and local features are

Figure 2. Illustration of our proposed 3-dimension partition strat-

egy. H, W, C refer respectively to Height, Width and Channel

dimensions of a feature map.

combined together to build more robust visual signa-

tures.

Results of experiments conducted on 4 large scale ve-

hicle Re-ID datasets show that our proposed model PRN

significantly surpasses state-of-the-art methods. We further

conduct ablation studies to separately verify the effective-

ness of each component in PRN.

2. Related Work

We firstly review some related studies conducted for per-

son Re-ID. Since person Re-ID and vehicle Re-ID are sim-

ilar tasks, techniques from one task can usually be adapted

to the other one. Then, we mainly compare different ap-

proaches on vehicle Re-ID.

Person Re-ID: In computer vision community, person

Re-ID has always been a hot topic and follows a common

pipeline: learning from training data to build appearance

signatures for query and gallery images, then comparing

quantitatively the similarity between each other. In [18],

authors adopt a pair-wise Siamese network architecture to

treat Re-ID as a verification task. Instead of using pair-

wise matching, triplet loss considers three samples simul-

taneously by pushing away negative sample from anchor,

which has proven to be more efficient for identification

tasks. Cheng et al. [4] adopt triplet loss to a part-based

model. Hermans et al. [10] introduce variants of the clas-

sic triplet loss, i.e., Batch Hard and Batch All triplet losses.

These variants confirm the effectiveness of the triplet loss

for person Re-ID tasks. Our proposed model PRN combines

Batch Hard triplet loss with softmax cross-entropy loss with

the objective of boosting PRN’s performance on both hard

and normal samples.
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Another popular strategy for obtaining a better perfor-

mance in person Re-ID task is to train network on distinct

partitioned parts and to combine local features with global

features. Both hand-crafted feature based models [8, 6, 16]

and deep learning based models [30, 25, 7] have taken it

into consideration. To tackle the high similarity problem in

Figure 1, we leverage multiple partitions jointly at 3 dimen-

sions on feature map to fully exploit local features.

Vehicle Re-ID: As compared to person Re-ID, vehicle

Re-ID is a relatively understudied topic. Prior to deep learn-

ing approaches, people usually work on hand-crafted fea-

tures. In [22], authors propose to recognize vehicles with

their license plate numbers and to infer their trajectories

for a better understanding in urban traffic flow. Zapletal et

al. [31] propose a real-time Re-ID model using color his-

tograms and histograms of oriented gradients. However,

hand-crafted feature based approaches usually lose perfor-

mance on large scale datasets. To bridge the gap between

these two kinds of features, Liu et al. [20] propose the

fusion of multiple features e.g., color, texture, and deep

learned semantic features.

With the rapid development of deep learning techniques

in computer vision community, neural network based mod-

els have become a mainstream for large-scale vehicle Re-

ID. In [21], Liu et al. propose a large-scale benchmark

VeRi-776 and enhance the performance of their previous

model FACT in [20] with a Siamese network for license

plate recognition and a spatio-temporal property based re-

ranking. Shen et al. [24] propose a two-stage framework

that incorporates a Siamese-CNN based network for match-

ing visual appearance and a LSTM based path inference

mechanism. Both of them strongly depend on spatio-

temporal information available on VeRi-776 dataset, which

makes it impossible to be implemented on datasets with-

out these information, e.g., VehicleID [19]. In [35], authors

leverage viewpoint information to build a viewpoint sensi-

tive framework and transform the single-view features into

a global multi-view feature representation. The problem is

that more extra annotation is needed. Recent state-of-the-

art appraoches are [2, 17]. Using solely identity labels, they

both adopt triplet loss in their framework for learning better

visual embeddings. In [2], authors conduct a group-based

clustering on a VGGM network [3], while in [17] authors

adopt MobileNet [11] to reduce time complexity. To extract

more discriminative local features and finally build robust

view-point invariant signatures, we employ a deeper back-

bone network (ResNet-50) and use local features extracted

from multiple partitions to compensate for the absence of

extra annotation.

3. Proposed Method

In this section, we first present the general architecture

of our proposed PRN. Next, more details about key compo-

nents in PRN are discussed in the following subsections. At

the end, we focus on the loss functions that are used to train

our model.

3.1. General architecture of PRN

Figure 3 shows the general architecture of PRN. Input

images are sampled into batches. Each batch contains nid

different identities, where we randomly select nimg sam-

ples from images of same identity. Thus, the batch size

equals nid ∗ nimg . We duplicate last layers of backbone

network and split it into 2 branches in order to increase the

independence of learned spatial features. Here we name

our 2 branches Height-Channel Branch and Width-Channel

Branch. When an image is fed into backbone network, 2

feature maps are generated from the 2 branches. In Height-

Channel Branch, the feature map is partitioned into 4 hori-

zontal strips and 4 channel groups. 4 is a relatively moderate

number of partitions for a vehicle image. Too few partition

parts make local features close to global features, while too

many partition parts reduce global feature weight in the final

appearance signature. Similarly, in Width-Channel Branch,

the feature map is partitioned into 4 vertical strips and 4

channel groups. Next, a Global Max Pooling (GMP) op-

eration is conducted on each partitioned map as well as on

entire feature maps. Since dimensions of feature vectors af-

ter GMP are different, we use a 1*1 convolution layer on

each vector to unify dimensions of the vectors to 256. Each

1*1 convolution layer is followed by a batch normalization

(BN) layer [14]. Fully connected layers (FC) are then em-

ployed as classifiers. Outputs of FC layers are fed into 18

softmax losses. 2 global feature vectors are fed into 2 triplet

losses. Parameters in the network are updated by a combi-

nation of the softmax losses and the triplet losses. All the

feature vectors (Dim=256) after BN layers are concatenated

together as an appearance signature (Dim=256*18) for in-

ference .

3.2. Key components in PRN

Backbone Network. Diverse backbone networks have

been adopted in previous vehicle Re-ID models, such as

VGG CNN M 1024 [3], MobileNet [11], ResNet [9], etc.

Conceptually, any CNN neural network designed for image

classification can be adjusted as our backbone network. In

our proposed PRN, a ResNet-50 is used for its well designed

architecture and competitive performance. Following mod-

ification strategies in state-of-the-art person Re-ID models

[25, 27], we duplicate convolutional layers after conv4 1

layer in order to split the ResNet-50 into 2 branches. To

keep more deep features, the stride of down-sampling oper-

ations in the last convolutional layer conv 5 is set to 1.

3D Partitions. Height-wise partition is a common strat-

egy in person Re-ID models, because human body can be

divided into several meaningful parts, like head, thorax, legs
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Figure 3. General architecture of our proposed model. In this paper, a ResNet-50 is used as our backbone network. Layers after conv4 1

in Resnet-50 are duplicated to split our network into 2 independent branches. GMP refers to Global Max Pooling. Conv refers to 1*1

convolutional layer, which aims to unify dimensions of global and local feature vectors. FC refers to fully connected layer. BN refers to

Batch Normalization layer. In the test phase, all the feature vectors (Dim=256) after Batch Normalization layer are concatenated together

as an appearance signature (Dim=256*18).

and feet. When horizontal flip operation is applied, it makes

no sense to consider width partition. Unlike the human

body, a car body can be roughly divided into ceiling, wind-

shield, header panel, wheels, etc. on the vertical axis, and

into hood, doors, trunk, etc. on the horizontal axis. Thus,

we employ both height-wise and width-wise partitions in

our model for vehicle Re-ID. Moreover, filters in a convo-

lutional layer generate channel information. Even though

inputs are the same, they learn and update their parame-

ters independently. Local features on channel-wise parti-

tioned parts can be different from global features. By 3D

partitions, our proposed PRN is able to extract maximally

distinct local features, which helps to build robust vehicle

appearance signatures.

3.3. Loss function

Softmax Cross-entropy loss. Softmax Cross-entropy

loss is the most common used loss function in image clas-

sification tasks. The loss in a mini-batch can be described

as:

Lsoftmax = −

Ni
∑

i=1

log

(

exp(x[y])
∑Nid

j=1
exp(x[j])

)

(1)

where Ni denotes the number of images in the mini-batch,

Nid is the number of identities in the whole training set. y is

the ground truth identity of input image and x[j] represents

the output of fully-connected layer for jth identity.

Triplet loss. In a mini-batch which contains P identities

and K images for each identity, each image (anchor) has

K − 1 images of same identity (positives) and (P − 1) ∗K
images of different identities (negatives). Triplet loss aims

at pulling the positive pair (a, p) together while pushing the

negative pair (a, n) away by a margin. Batch hard triplet

loss is introduced in [10] as a variant of traditional triplet

loss, which aims at laying more weight on most closest neg-

ative and farthest positive pairs. The batch hard triplet loss

can be defined as:
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Ltriplet =

P
∑

i=1

K
∑

a=1

[ max
p=1,...,K

‖ai − pi‖2

− min
n=1,...,K
j=1,...,P

j 6=i

‖ai − nj‖2 + α]+
(2)

where ai, pi and ni are the feature vectors of anchor, posi-

tive and negative samples respectively, and α is the margin

to control the difference between positive and negative pair

distances.

Total loss. The total loss is used to train our proposed

method in an end-to-end manner, which combines softmax

cross entropy losses with triplet losses.

Ltotal = λ
1

NCE

NCE
∑

i=1

LCE +
1

Ntriplet

Ntriplet
∑

i=1

Ltriplet (3)

where Nsoftmax and Ntriplet are the number of softmax

cross entropy losses and triplet losses respectively. In our

proposed PRN, all 18 outputs of fully connected layers are

fed into softmax cross entropy loss and 2 global feature vec-

tors are trained with triplet loss, so we have NCE = 18 and

Ntriplet = 2. Parameter λ balances the contribution of two

kinds of loss functions.

4. Experiment Details

4.1. Datasets and Evaluation metrics

Extensive experiments are conducted on four large-scale

vehicle Re-ID datasets, i.e., VeRi-776, VehicleID, VRIC

and CityFlow-ReID to validate the performance of our pro-

posed PRN.

The VeRi-776 dataset [21] is divided into two subsets for

training and testing. The training set contains 37,781 im-

ages of 576 vehicles and the testing set contains 11,579 im-

ages of 200 vehicles. Following the evaluation protocol in

[21], the image-to-track cross-camera search is performed,

which means we use one image of a vehicle from one cam-

era to search for tracks of the same vehicle in other cameras.

We use mean average precision (mAP), as well as Top-1 and

Top-5 accuracy of cumulative match curve (CMC).

The VehicleID dataset [19] is much larger than VeRi-

776. It contains data captured during daytime by multiple

real-world surveillance cameras distributed in a small city in

China. There are 26,267 vehicles (221,763 images in total)

in the entire dataset. The training set has 113,346 images of

13,164 vehicles and the rest is used for testing. Along with

the dataset, 3 test protocols of different size, shown in Table

1, are proposed in the original paper. Since one camera only

takes one image for same vehicle, we neglect cross-camera

setting and conduct image-to-image search for testing. For

each test protocol, one image of each identity is randomly

selected to form a gallery set, and all the remaining images

are used as the query set. The average results of 10-time-

repeated random sampling are reported as the performance

of our model on VehicleID dataset. Evaluation metrics for

VehicleID dataset are Top-1 and Top-5 accuracy of CMC.

Protocol Small Medium Large

Identity size 800 1,600 2,400

Image size 6,493 13,377 19,777

Table 1. Three test protocols of VehicleID dataset.

The VRIC dataset [15] is a newer dataset, which con-

sists of 60,430 images of 5,656 vehicle IDs collected from

60 different cameras in traffic scenes. VRIC differs signif-

icantly from existing datasets in that unconstrained vehicle

appearances were captured with variations in imaging reso-

lution, motion blur, weather condition, and occlusion. The

training set has 54,808 images of 2,811 vehicles, while the

rest 5,622 images of 2,811 identities are used for testing.

Evaluation metrics for VehicleID dataset are Top-1 and Top-

5 accuracy of CMC.

The CityFlow-ReID dataset [26] is used as the evaluation

protocol at the 2019 AI City Challenge. In total, it contains

56,277 bounding boxes, where 36,935 of them belonging

to 333 vehicle identities in the training set. The test set

consists of 18,290 bounding boxes belonging to the other

333 identities. The rest of the 1,052 images are the queries.

On average, each vehicle has 84.50 image signatures from

4.55 camera views. Camera information is not available, so

cross-camera search is not necessary. Train and test track

information is present, but absent for query images. There-

fore, both image-to-image and image-to-tracklet searches

are possible. To adopt the image-to-tracklet matching, sig-

natures of each image in a tracklet are aggregated together

by a mean pooling to build an overall tracklet signature.

4.2. Implementation details

All the input images are resized to 384 ∗ 384 so that

enough information is maintained on each partitioned part.

We use a ResNet-50 pretrained on ImageNet [5] as our

backbone network to accelerate the training process. In the

backbone network, we set the stride of down-sampling in

the last convolutional layer to 1 and duplicate all the layers

after conv4 1 into 2 independent branches. Each 1*1 con-

volutional layer is followed by a Batch Normalization layer

and a fully connected layer. All the 1*1 convolutional lay-

ers, batch normalization layers and fully connected layers

do not share weights. To make our proposed model more

robust, we apply a Random Horizontal Flip and a Random

Erasing [33] of a probability of 0.5 for data augmentation.

The batch size is set to 16 with randomly selected 4 identi-

ties and 4 images for each identity. We train our model with
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Architecture Top-1 mAP

B(w/o partition) 93.09 72.76

B(HP) 91.95 74.54

B(WP) 93.33 76.91

B(CP) 95.53 79.09

B(HP+WP) 94.76 80.56

B(HP)+B(WP) 95.59 82.92

B(HP+CP) 96.25 82.85

B(WP+CP) 96.25 83.04

B(HP+WP+CP) 96.54 84.26

B(HP+CP)+B(WP+CP) 97.14 85.84

Table 2. Performance comparison of different architectures of

PRN on VeRi-776 dataset at 2 evaluation metrics: Top-1 and mAP

where the bold font denotes the best performance. ”B” refers to an

independent branch. ”HP”, ”WP” and ”CP” refer respectively to

height-wise, width-wise and channel-wise partition.

Ltotal Top-1 mAP

w/o Ltriplet 96.66 84.90

λ = 1 96.42 84.52

λ = 2 97.14 85.84

λ = 3 97.26 85.79

Table 3. Performance comparison of training PRN with different

Ltotal on VeRi-776 dataset at 2 evaluation metrics: Top-1 and

mAP where the bold font denotes the best performance.

an AMSGrad [23] based Adam optimizer for 500 epochs.

The weight decay factor for L2 regularization is set to 5e-

4. The initial learning rate is set to 2e-4. It decays to 2e-5

after 300 epochs and to 2e-6 after 400 epochs. The mar-

gin α in triplet loss is set to 1.2 in all experiments and the

parameter λ in total loss is set to 2. During evaluation,

we concatenate all the feature vectors after 1*1 convolu-

tional layer together as appearance representations for each

image in query and gallery sets. Both feature representa-

tions extracted from original and horizontally flipped im-

age are summed up and normalized to be the final vehicle

appearance signature of an input image. Our model is im-

plemented on PyTorch framework and takes about 6 hours

to train on a single NVIDIA 1080 Ti GPU for VeRi-776

dataset.

4.3. Component Analysis

Extensive experiments are conducted on VeRi-776

dataset to verify the effectiveness of crucial components in

PRN. We compare performance of different structure and

loss function variants to find the optimal architecture for

our proposed PRN.

Partition and Structure: we mainly compare different

combinations of height-wise, width-wise and channel-wise

partitions. We report performance of architecture variants

in Table 2. The results show that partitions can generally

improve the performance of neural networks in vehicle Re-

ID tasks. Among 3 types of partition, channel-wise parti-

tion brings the highest improvement, while width-wise par-

tition brings the least improvement. Combination of differ-

ent types of partition yields better performance than single

partition. In addition, adopting height-wise and width-wise

partition separately in 2 branches strengthens independence

of learned spatial features, which further boosts the perfor-

mance of PRN.

Loss function: Softmax loss is the most common loss

function in multi-class image classification tasks. Triplet

loss makes it possible to lay more weights on hard sam-

ples. To balance contributions of 2 loss functions on hard

and normal samples, a weight parameter λ should be de-

termined. We test several possibilities of Ltotal, such as

no triplet loss, equal weights on softmax loss and triplet

loss, and more weights on softmax loss. In Table 3, results

show that triplet loss slightly increase the performance of

our model. But more weights are supposed to be laid on

softmax loss. In the end, we set λ = 2 for all experiments.

4.4. Comparison with State­of­the­art

We compare our proposed model PRN with state-of-the-

art methods on the 4 datasets, i.e., VeRi-776, VehicleID,

VRIC and CityFlow-ReID with corresponding evaluation

metrics.

VeRi-776: Table 4 presents the result comparison be-

tween previous state-of-the-art and our model on VeRi-776

dataset. Our proposed model PRN achieves 97.14% on

Top-1 accuracy, 99.4% on Top-5 accuracy and 85.84% on

mAP without re-ranking [32]. These results surpass pre-

vious state-of-the-art on all the 3 metrics, especially mAP.

Re-ranking can further enhance the performance of PRN.

A good mAP score demonstrates that PRN has a stronger

capacity to retrieve all the corresponding images of same

identity in the gallery set, regardless of different camera

properties and viewpoint changes.

VehicleID: The comparison of results on Vehicle-ID

dataset is reported in Table 5. Since all the images are cap-

tured by cameras placed either in front or in back of ve-

hicles, only front and rear views of vehicle are present in

Vehicle-ID dataset. Side views of vehicle are absent. Due to

the symmetry along width dimension in both front and rear

views of vehicle, partition along width dimension makes

PRN consider too much duplicated information. Hence, be-

sides results of our proposed PRN, we also report a simpli-

fied version that with only Height-Channel Branch. Results

show that RNN-HA(ResNet+672) [29] still has the best per-

formance on Top-1 accuracy. But our simplified PRN out-

performs previous state-of-the-art on Top-5 accuracy.

VRIC: VRIC is a relatively new-released dataset, in con-

sequence, only few results have been reported as previous
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Method Top-1 Top-5 mAP Publication Annotation

FACT [20] 59.65 75.27 19.92 ICME’16 ID + Attr

FACT + Plate-SNN + STR[21] 61.44 78.78 27.77 ECCV’16 ID + Plate + ST

Siamese-CNN+Path-LSTM [24] 83.48 90.04 58.27 ICCV’17 ID + ST

OIFE [28] 89.43 - 48.00 ICCV’17 ID + KP

VAMI [35] 77.03 90.82 50.13 CVPR’18 ID + Attr + VP

VAMI [35] + STR [21] 85.92 91.84 61.32 CVPR’18 ID + Attr + VP + ST

RNN-HA(ResNet) [29] 80.79 92.31 56.80 ACCV’18 ID+Attr

GS-TRE [2] 96.24 98.97 59.47 IEEE Trans. Multimed.18 ID

PRN(ours) 97.14 99.40 85.84 ID

PRN(ours) + RR 97.38 98.87 90.48 ID

Table 4. Comparison of results (%) on VeRi-776 dataset with 3 evaluation metrics: Top-1, Top-5 and mAP where the bold font denotes the

best method. ID refers to identity labels. Attr refers to Attributes annotations, such as color and model. Plate refers to extra plate number

datasets. KP refers to Key points. VP refers to Viewpoint labels. ST stands for spatio-temporal information. RR stands for Re-Ranking

[32].

Setting Test Size=800 Test Size=1600 Test Size=2400

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

FACT [21] 49.53 68.07 44.59 64.57 39.92 60.32

Mixed Diff+CCL [19] 48.93 75.65 45.05 68.85 41.05 63.38

XVGAN [34] 52.87 80.83 49.55 71.39 44.89 66.65

VAMI [35] 63.12 83.25 52.87 75.12 47.34 70.29

GS-TRE [2] 75.9 84.2 74.8 83.6 74.0 82.7

RNN-HA(ResNet+672) [29] 83.8 88.1 81.9 87.0 81.1 87.4

PRN(ours) 63.07 89.29 55.42 84.23 50.36 79.14

PRN(Single Height-Channel Branch) 78.92 94.81 74.94 92.02 71.58 88.46

Table 5. Comparison of results (%) on VehicleID dataset with 2 evaluation metrics: Top-1 and Top-5 where the bold font denotes the best

method.

Ltotal Top-1 Top-5

Siamese-Visual [24]* 30.55 57.30

OIFE(Single Branch) [28]* 24.62 50.98

MSVF [15] 46.61 65.58

PRN(ours) 80.42 94.83

Table 6. Comparison of results (%) on VRIC dataset with 2 eval-

uation metrics: Top-1 and Top-5 where the bold font denotes the

best method. * refers to results represented in [15].

work. We compare the results of our proposed PRN with

several results mentioned in the paper of VRIC dataset [15].

As shown in Table 6, our PRN outperforms previous state-

of-the-art on both Top-1 and Top-5 accuracy by a large mar-

gin.

CityFlow-ReID: We compare the results of our pro-

posed PRN with several baselines mentioned in the paper

of CityFlow dataset [26]. Results are reported in Table

7. Image-to-tracklet search shows a superior performance

compared to image-to-image search. Our PRN outper-

forms these baselines on both Top-1 and accuracy and mAP

by a large margin. To get a better performance, we also

Method Top-1 mAP

DenseNet121+Xent+Htri [26] 51.7 31.0

ResNext101+Xent+Htri [26] 48.8 32.0

MobileNetV1+BH [26] 48.4 32.0

PRN(ours)-I2I+RR 59.89 42.75

PRN(ours)-I2T 62.17 49.48

PRN(ours)-I2T+Fusion 65.97 53.44

Table 7. Comparison of results (%) on CityFlow-ReID dataset with

2 evaluation metrics: Top-1 and mAP. I2I and I2T refer respec-

tively to image-to-image and image-to-tracklet search. RR stands

for Re-Ranking [32]. Fusion refers to multiple backbone network

feature fusion.

changed the backbone network from ResNet-50 to ResNet-

152, DenseNet-161 [13] and SeNet-152 [12]. Final appear-

ance signature for a vehicle is the average of appearance

signatures built on these 3 deeper backbone networks. Our

fusion based PRN achieved 13th place among 84 teams in

the 2019 AI CITY CHALLENGE [1] track 2 vehicle Re-ID

task.
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5. Conclusion

In this paper, we focus on the well-considered parti-
tion strategies for person Re-ID and adapt it for vehi-
cle Re-ID task. By conducting partitions along each di-
mension in the feature map, more local features are ex-
tracted to complement global features. A 2-branch struc-
ture is further proposed to reduce the number of dupli-
cated features extracted from spatial dimensions (height and
width). We conduct extensive ablation studies on VeRi-
776 dataset to verify the effectiveness of each component.
Without using any extra annotation, except identities, we
propose a novel end-to-end trainable model called PRN
for vehicle Re-ID, which outperforms current state-of-the-
art.
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